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Abstract

We consider a one-dimensional coupled stationary Schrödinger drift-diffusion model for quantum semiconductor

device simulations. The device domain is decomposed into a part with large quantum effects (quantum zone) and a part

where quantum effects are negligible (classical zone). We give boundary conditions at the classic–quantum interface

which are current preserving. Collisions within the quantum zone are introduced via a Pauli master equation. To illus-

trate the validity we apply the model to three resonant tunneling diodes.
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1. Introduction

Quantum effects play an important role in nowadays semiconductor devices. The ongoing progress of

industrial semiconductor device technologies permits to fabricate devices which inherently employ quantum

phenomena in their operation, e.g. resonant tunneling diodes, quantum well laser, etc. The widely used

drift-diffusion equation introduced by van Roosbroeck in 1950 [18], is not capable of properly taking into

account these quantum effects. A finer level of modeling has to be used which is achieved by Schrödinger�s
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or equivalently Wigner�s equation. However the numerical treatment of these models is very expensive com-

pared to the drift-diffusion model. In many semiconductor devices quantum effects take place in a localized

region, e.g. around the double barrier in resonant tunneling diodes, whereas the rest of the device is well

described by classical models like the drift-diffusion model. Thus it makes sense to follow a hybrid strategy:

use a quantum model in regions where quantum effects are strong and couple this model by proper interface
conditions to a classical model in the rest of the device domain.

In this paper, we focus on a hybrid model, more precisely a coupled Schrödinger drift-diffusion model,

which describes the transport in a resonant tunneling diode. Resonant tunneling diodes are typical exam-

ples for semiconductor devices whose functionality depends on quantum effects: Only particles with ener-

gies close to the resonant energy can pass through the double barrier. By tuning the applied bias one alters

the resonant energy. The maximum current is achieved, if the Fermi energy in the source is equal to the

resonant energy. If the resonant energy is below the Fermi energy of the source, the current decreases. This

leads to the well known negative differential resistant effect observed in resonant tunneling diodes, i.e. in a
certain region the current is decreasing with increasing voltage, see [20]. This non monotone current–volt-

age characteristics makes the resonant tunneling diodes very interesting in logic applications, as frequency

filter, etc. The double barriers are in general sandwiched by highly doped regions in which a classical model

would reasonable describe the electron transport. Therefore a hybrid model seems to be a useful strategy

for resonant tunneling devices. The aim of this paper is to develop such a hybrid model in a one-dimen-

sional stationary framework, by using a drift-diffusion model in the highly doped regions and Schr€odinger�s
equation around the double barrier. The two models have to be coupled such that the continuity of the

classical and quantum current is preserved, which is a physical consistent condition for the coupling. To
take into account many particle effects, a self-consistent resolution of the coupled model with Poisson�s
equation is required.

In [3] a coupled kinetic–quantum model has been introduced, where the Schrödinger equation was used

to define the density in the quantum zone. A Boltzmann equation in the classical zones is used to describe

the density in the rest of the device domain. At the classical–quantum interface reflection–transmission con-

ditions, i.e. boundary conditions for the Boltzmann equation depending on the reflection and transmission

coefficient, have been defined. The distribution function which solves the Boltzmann equation with these

reflection–transmission conditions was then used as ‘‘alimentation function’’ to construct the density in
the quantum zone. Poisson�s equation was used for a self-consistent resolution of the electrostatic potential.

It was shown that the reflection–transmission conditions are current preserving. The quantum region was

treated as ballistic, whereas the classical regions can be highly collisional by choosing a proper collision

operator in the Boltzmann equation.

Another hybrid model, which is more closely related to the model we will treat in this paper, was intro-

duced in [6,7]. The Boltzmann equation together with the reflection–transmission conditions of the kinetic–

quantum model of [3] was replaced by the drift-diffusion equation and corresponding connection conditions

by the use of a diffusion approximation. The treatment of the quantum region and the Poisson equation is
left as in [3]. Since the connection conditions are obtained by a boundary layer analysis of the reflection–

transmission conditions, there exists only approximate formulas of the connection conditions for the drift-

diffusion equation. Here, we aim at a direct coupling of drift-diffusion and quantum models. Therefore, we

will get analytic expression for the connection conditions.

The two hybrid models described above, i.e. [3,6], assume that the quantum region is ballistic and col-

lisions are only taken into account in the classical regions. But electron–phonon collisions play an impor-

tant role also in the quantum region. One possibility to model collisions is to use the Wigner formalism in

the quantum zone with a semiclassical collision operator. Indeed, in the classical setting, the derivation of
the collision integral is based on balance laws in which the distribution function is used to estimate the

number density in phase-space. In the Wigner setting however, distribution functions may be negative

and can no longer be interpreted as number densities in phase-space. Therefore, such collision integrals
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can no longer be derived using this methodology an their use in the Wigner function approach is subject to

caution. In [8,9] Fischetti used a Pauli master equation to describe the electron transport under the present

of collisions in a quantum mechanical setting. To that end Fischetti augments the Pauli master equation as

developed by Pauli [16] by a term describing the interaction with the reservoirs at the left and right con-

tacts, i.e. the quantum mechanical distribution function is determined by a master equation which consists
of a Pauli operator (modeling the collisions) and an interaction term with the reservoirs. Here, we use a

Pauli master equation approach similar to the approach of Fischetti [8,9] to model collisions in the quan-

tum zone. However, in our case the interaction with the classical zones have to be taken into account in-

stead of the reservoirs.

The paper is organized as follows. In Section 2, we present the coupled Schrödinger drift-diffusion equa-

tion, where we consider first the case where the quantum zone is treated ballistically and then the case where

collisions are included by a Pauli master equation approach. In Section 3, the hybrid models are validated

against three resonant tunneling diode test cases to illustrate the validity of the models. We close with con-
clusions in Section 4.
2. Presentation of the method

In this section, we will present the strategy to couple Schrödinger and drift-diffusion equation. We as-

sume that the device domain K = (0,L) is divided into a quantum zone R = (x1,x2), where

0 < x1 < x2 < L, and a classical region X = KnR, where KnR denotes the complement of R in K. In order
to define the density and current of the coupled Schrödinger drift-diffusion model, we will first assume that

the electrostatic potentialW is given on K and later pose the Poisson equation whichW has to solve. Let DE
denote the band-edge offset, for simplicity we define V = W + DE.

2.1. The quantum region

We consider the potential eV defined by
eV ðxÞ ¼
V 1 :¼ V ðx1Þ; for x 6 x1;

V ðxÞ; for x 2 R;

V 2 :¼ V ðx2Þ; for x P x2;

8><>:

i.e. the potential eV coincides with the potential V inside the quantum zone R and is extended continuously

to the whole real line. To fix our ideas we assume that V2 > V1 and set dV: = V2 � V1. Furthermore, we

assume that the effective mass m ¼ mðxÞ; x 2 R, is strictly positive and is constant outside the quantum

zone R with the same value, which we denote by m.

We consider the Schrödinger equation
� �h2

2

d

dx
1

mðxÞ
d

dx
� eeV ðxÞ

� �
wpðxÞ ¼ EpwpðxÞ; x 2 R; p 2 R; ð2:1Þ
where
Ep ¼
p2

2m � eV 1; p > 0;

p2

2m � eV 2; p < 0;

(

where e denotes the elementary charge (positive) and �h is the scaled Planck constant. The operator (2.1) has
been intensively studied, see e.g. [5,4,1,11,10]. For p > 0, wp denote the right-going scattering states, whereas



132 M. Baro et al. / Journal of Computational Physics 203 (2005) 129–153
wp, p < 0, denote the left-going scattering states. In the regions x < x1 and x > x2 the solutions of Schrödin-

ger�s equation are given by a superposition of plane waves, i.e.
wpðxÞ ¼
exp i p

�h ðx� x1Þ
� �

þ rðpÞ exp �i p
�h ðx� x1Þ

� �
; x < x1;

tðpÞ exp i
pþ
�h ðx� x2Þ

� �
; x > x2;

(
for p > 0 ð2:2aÞ
and
wpðxÞ ¼
tðpÞ exp �i p�

�h ðx� x1Þ
� �

; x < x1;

exp i p
�h ðx� x2Þ

� �
þ rðpÞ exp �i p

�h ðx� x2Þ
� �

; x > x2;

(
for p < 0; ð2:2bÞ
with
pþ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ p2d

q
; and p� :¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 � p2d

q
;

where pd ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2emdV

p
. The coefficients t(p) and r(p) denote the transmission and reflection amplitudes,

respectively. The transmission and reflection coefficients are then defined by
T ðpÞ ¼
pþjtðpÞj2

jpj ; p > 0;

p�jtðpÞj2
jpj ; p < 0;

8<: and RðpÞ ¼ jrðpÞj2:
We have the following relations between the transmission and reflection coefficient
T ðpÞ þ RðpÞ ¼ 1; for all p 2 R;

T ðpÞ ¼ T ð�pþÞ; for all p > 0;

T ðpÞ ¼ T ðp�Þ; for all p < �pd;

RðpÞ ¼ 1; for � pd < p < 0:

ð2:3Þ
Using the asymptotics (2.2) of the scattering states wp, one can derive boundary conditions for wp at the

boundaries x1 and x2, see [6,7,10,1]. Furthermore, note that the transmission and reflection amplitudes are
given in terms of wpðxiÞ and w0

pðxiÞ; i ¼ 1; 2; see [6,1] for details. This allows a numerical treatment of the

Schrödinger equation.

Let gðpÞ; p 2 R, be a given distribution function. The quantum density in the region R is given by
nQðxÞ :¼
Z
R

gðpÞjwpðxÞj
2
dp; x 2 R: ð2:4Þ
The current is defined by
jQðxÞ :¼
Z
R

gðpÞIm �h
mðxÞ

o

ox
wpðxÞwpðxÞ

� �
dp; x 2 R: ð2:5Þ
It is not difficult to see that the current density does not depend on x. Furthermore, a straightfor-

ward computation, using asymptotics of wp, i.e. (2.2), and the relations (2.3), gives the following expres-

sion for jQ
jQ ¼
Z 1

0

vpT ðpÞ gðpÞ � gð�pþÞ
� �

dp; ð2:6Þ
where vp is the electron group velocity given by vp :¼ d
dp Ep ¼ p

m.
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2.2. The classical region

We consider a stationary drift-diffusion model on the disconnected domain X, i.e.
� d

dx
jC ¼ 0; jC ¼ lnC

d

dx
u; nC ¼ F ðV � uÞ; ð2:7Þ
where l 2 R; l > 0, is the mobility of electrons, F describes the dependence of the carrier density nC on the

chemical potential and u is the unknown electro-chemical potential, see [13]. We assume that F is either
F ðsÞ ¼ N 0 exp s=U thð Þ; Boltzmann statistic; ð2:8Þ

or
F ðsÞ ¼ N 0

2ffiffiffi
p

p
Z 1

0

ffiffi
t

p
dt

1þ expðt � s=U thÞ
; Fermi–Dirac statistic; ð2:9Þ
where Uth = kBT/e denotes the thermal potential (kB is the Boltzmann constant and T the lattice tempera-

ture) and N 0 ¼ 2ðkBTm
2p�h2

Þ3=2 is the effective density of states. We impose the following boundary conditions
uð0Þ ¼ u0; uðLÞ ¼ uL; ð2:10Þ

jCðx1Þ ¼ jCðx2Þ ¼ hðuðx1ÞÞ � hðuðx2ÞÞ; ð2:11Þ

where u0; uL 2 R are given and h is a real-valued and monotonously decreasing function which will be

determined later by the quantum mechanical expression for the current.
The system (2.7) with the boundary conditions (2.10) has a unique (weak) solution u. This can be seen by

writing
Z
X
AðuÞw dx ¼

Z
X
lF ðV � uÞ d

dx
u

d

dx
w dxþ hðuðx1ÞÞ � hðuðx2ÞÞ½ � wðx2Þ � wðx1Þ½ � ð2:12Þ
for all u 2 W1,2(X), w 2 {w 2 W1,2(X)jw(0) = w(L) = 0}. Using the Lax–Milgram theorem, see [12], one can

show that there exists a weak solution of the drift-diffusion model. We refer to [2] for the details.
Let us now consider the special case where F is given by (2.8) and h of the form
hðnÞ ¼ H�1 expð�n=U thÞ; H > 0: ð2:13Þ

The boundary condition (2.10) can then be written as
uð0Þ ¼ u0; uðLÞ ¼ uL; ð2:14Þ

jCðx1Þ ¼ jCðx2Þ ¼: jC; ð2:15Þ

expð�uðx1Þ=U thÞ � expð�uðx2Þ=U thÞ ¼ HjC; ð2:16Þ

which are exactly the boundary conditions treated in [6]. Furthermore, one easily verifies that u is given by
uðxÞ ¼
�U th ln exp �u0=U thð Þ � jC=ðU thlN 0Þ

R x
0
exp �V ðtÞ=U thð Þdt

� �
; x 2 ð0; x1Þ;

�U th ln exp �uL=U thð Þ þ jC=ðU thlN 0Þ
R L
x exp �V ðtÞ=U thð Þdt

h i
; x 2 ðx2; LÞ;

8<:

where
jC ¼ exp �u0=U thð Þ � exp �uL=U thð Þ
Hþ 1=ðU thlN 0Þ

R
X exp �V ðtÞ=U thð Þdt :
Clearly we have
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jC S 0; iff u0 S uL; ð2:17Þ
i.e. the direction of the current depends on the difference of the electro-chemical potential at the boundaries.

Furthermore, we have in thermodynamic equilibrium, i.e. u0 = uL = /, that u(x) = /, for all x 2 X, and
jC = 0.

2.3. The hybrid model

In this subsection, we couple the quantum and the classical model considered in Sections 2.1 and 2.2. The

two systems are coupled in such a way that the continuity of the classical and the quantum mechanical cur-

rent over the whole device domain K is guaranteed, i.e. jC = jQ.

We introduce the density of the hybrid model n defined by
nðxÞ :¼
nQðxÞ; for x 2 R;

nCðxÞ; for x 2 X:

�
ð2:18Þ
Furthermore, the electrostatic potential has to satisfy Poisson�s equation on the whole device domain K
� d

dx
�
d

dx
W ¼ e nD � nð Þ; ð2:19aÞ
with Dirichlet boundary conditions
W ð0Þ ¼ 0; W ðLÞ ¼ W L; ð2:19bÞ

where nD denotes the doping profile.

We will consider two different cases: (i) the quantum zone is treated ballistically, and (ii) collision in the

quantum zone are introduced via a Pauli master equation.

2.3.1. Ballistic quantum zone

Let us first assume that the electro-chemical potential u at the interface is known. We define the distri-

bution function g by
gðpÞ :¼
f ðEp þ euðx1ÞÞ; for p > 0;

f ðEp þ euðx2ÞÞ; for p < 0;

�
ð2:20Þ
where f is the distribution function of reduced carrier gas, i.e.
f ðsÞ ¼ n0 exp �s=ðkBT Þð Þ; Boltzmann statistic; ð2:21Þ

or
f ðsÞ ¼ n0 ln 1þ expð ð � s=ðkBT ÞÞÞ; Fermi–Dirac statistic; ð2:22Þ
with n0 ¼ ðmkBT Þ=ð2p2�h3Þ. Inserting this in the expression (2.6) for the quantum current we obtain
jQ ¼ hðuðx1ÞÞ � hðuðx2ÞÞ;
with
hðnÞ ¼
Z 1

0

vpT ðpÞf ðEp þ enÞdp; ð2:23Þ
since Ep ¼ E�pþ , for all p > 0. Clearly h is monotonously decreasing, since f is monotonous. Using the func-
tion h defined by (2.23) in the boundary conditions of the drift-diffusion equation (2.10) guarantees the con-

tinuity of the classical and quantum current, i.e. jQ = jC.
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Therefore we look for a fixed point of the following mapping: Assume that W is a first guess of the elec-

trostatic potential. Solving the Schrödinger equation (2.1) we obtain the scattering functions wp and the

transmission coefficient T(p). Thus we can compute the function h by (2.23). Solving the drift-diffusion

equation (2.7) with boundary conditions (2.10), we obtain the electro-chemical potential u and conse-

quently the classical density nC. The quantum density is then determined by (2.4) with g given by (2.20).
Solving Poisson�s equation (2.19) we obtain a new potential Wnew.

In the special case where f is given by the Boltzmann distribution (2.21), we get for the function h
hðnÞ ¼ H�1 exp �n=U thð Þ;

with
H�1 ¼ n0

Z 1

0

vpT ðpÞ exp �Ep=ðkBT Þ
� �

dp; ð2:24Þ
see (2.13). The positivity of H is obvious.

The coupling of the drift-diffusion and Schrödinger equations described above is closely related to the

coupling used in [6], see also [7]. In [6] a diffusion approximation of the kinetic–quantum model introduced

in [3] was used which led to boundary conditions of the form (2.14)–(2.16). The constant H was obtained by
the approximation of the reflection–transmission conditions of [3] at the interface. There exists no analytic

formula of the coupling constant H used in [6], but several different approximate expressions for H. A clo-

ser look at this approximated formulas shows, that theH given by (2.24) is the leading term. The reflection–

transmission of the kinetic–quantum model [3] ensures the continuity of the kinetic and quantum current at

the interface. Looking at the diffusion approximation used in [6] we see that the continuity of the drift-dif-

fusion and quantum current is only preserved up to order a, where a is the small parameter of the diffusion

approximation. By our choice of H we obtain an exact continuity of the current and an analytic expression

for the constant H.
2.3.2. Collisional quantum zone

In order to introduce collisions, not only in the classical zone, but also in the quantum zone, we use a

Pauli master equation approach [16]. To that end we briefly recall the model introduced by Fischetti [8,9],

where the Pauli master equation was used to describe the transport of electrons in semiconductors between

two reservoirs: The distribution function g is determined by an Pauli master equation, i.e. an equation of

the form
otg ¼ Pg þ Rg; ð2:25Þ

where P is the Pauli operator modeling the collision effects and the operator R describes the interaction with

the reservoirs. The operator P is in general of the form
ðPgÞðpÞ ¼
Z
R

W p0 ! pgðp0Þð1� gðpÞÞdqðpÞ �
Z
R

W p! p0gðpÞð1� gðp0ÞÞdqðp0Þ; ð2:26Þ
where Wp! p 0 is the rate of transition from state p to p 0 and the measure dq(p), i.e. the density of states, is

given by
dqðpÞ ¼
Z x2

x1

jwpðxÞj
2
dx

� �
dp:
The operator R is of the form of an injection/extraction term and given by, see [9, Eq. (42)],
ðRgÞðpÞ ¼ mp fresðpÞ � gðpÞð Þ; ð2:27Þ
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where fres(p), p > 0, is the ‘‘quasiequilibrium’’ distribution function of the left reservoir and fres(p), p < 0, the

‘‘quasiequilibrium’’ distribution function of the right reservoir, respectively. The function fres(p) is repre-

sented by a Boltzmann (2.21) or Fermi–Dirac (2.22) distribution function of the form fresðEp � El;adj
F Þ, for

p > 0, and fresðEp � Er;adj
F Þ, for p < 0, where El;adj

F ; Er;adj
F are the ‘‘adjusted’’ Fermi-levels in the left/right res-

ervoirs, i.e. El;r;adj
F ¼ El;r

F þ fEl;r
F , where E

l;r
F are the Fermi-levels in the left/right reservoirs and

fEl;r
F have to be

chosen such a charge neutrality in the contacts and a conservation of the flux at the reservoir boundaries is

achieved, see [8,9,17]. The factor mp in (2.27) is a gain/loss rate given by
mp ¼
jvpjR x2

x1
jwpðxÞj

2
dx

; ð2:28Þ
where vp is – as before – the electron group velocity and
R x2
x1
jwpðxÞj

2
dx can be interpreted as the size of the

quantum region for particles of momentum p. Note that wp will be almost a free wave for momenta p cor-

responding to energies much larger than the maximal potential energy. Thus mp � jvpj=ðx2 � x1Þ for p with
Ep � maxx 2 R{�eV(x)}. For momenta p with energies Ep equal to resonant energies, the wave function wp

will be very localized in the quantum region and consequently the value of
R x2
x1
jwpðxÞj

2
dx will be very large.

Hence, mp � 0 for such p. Thus the factor mp takes into account that the resonant states cannot be fed as

strong as the other states by the classical regions. The resonant states are fed by the scattering mechanism

introduced by the Pauli operator P.

The Pauli Master equation (2.25) where the interaction with the reservoir is described by (2.27) was used

in [8,9] to simulate the electron transport in small semiconductor devices. Moreover, we refer the reader to

[8–11] for a detailed discussion on the validity of the Pauli master equation approach.
Let us now return to the coupled model. The distribution function g is determined by an equation of the

form (2.25), where the interaction R with the reservoirs are replaced by an operator C which takes into ac-

count the interaction with the classical regions, i.e.
otg ¼ Pg þ Cg: ð2:29Þ

The operator C is of the form
Cg ¼ otgð Þþ � otgð Þ�;

where the terms (otg)

± are gain and loss terms, respectively. To evaluate these terms we assume for the

moment that the electro-chemical potential u at the interface boundaries x1 and x2 is known. Assuming
that the particles entering the quantum zone at x1 and x2 with momentum p are distributed by

f(Ep + eu(x1)), p > 0, respectively f(Ep + eu(x2)), p < 0, where f is given by (2.21) or (2.22), we get for

the gain term
otgð ÞþðpÞ ¼ mpfclaðpÞ;

with
fclaðpÞ ¼
f ðEp þ euðx1ÞÞ; for p > 0;

f ðEp þ euðx2ÞÞ; for p < 0:

�

The loss term (otg)

� is given by
otgð Þ�ðpÞ ¼ mpgðpÞ; p 2 R;
where mp is a gain or loss rate of particle through the interface given by (2.28). Summing up, we find for the

operator C the expression
Cgð ÞðpÞ ¼ mp fclaðpÞ � gðpÞð Þ:
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Thus the operator C is exactly the operator R of [8,9], see (2.27), with fres replaced by fcla. The ‘‘adjusted’’

Fermi levels entering fres are replaced by the electro-chemical potential u entering fcla and the adjustment is

achieved by the boundary conditions of the drift-diffusion equation at the interface boundary. As in the

ballistic case these boundary conditions will be current preserving, but a continuity of particle density at

the interface boundary is not guaranteed.
Next we state our assumptions on the collision operator P. In order to obtain a linear operator, we ne-

glect here the Pauli exclusion principle and assume that P is of the form
ðPgÞðpÞ ¼
Z
R

W p0 ! pgðp0Þdqðp0Þ �
Z
R

W p! p0gðpÞdqðp0Þ:
We make the following hypothesis for the transition rate Wp! p 0: There exists a symmetric function Upp 0

such that
W p! p0 ¼ Upp0f0ðp0Þ; f 0ðpÞ :¼
f ðEpÞ
Neq

;

where f is either given by the Boltzmann distribution function (2.21) and Neq is the total number of par-

ticles in the quantum zone with respect to the equilibrium distribution function, i.e.
Neq ¼
Z
R

f ðEpÞdqðpÞ;
f0 is called the (normalized) quantum mechanical equilibrium distribution function and Upp0 the collision

cross section. We note that
R
R
f0ðpÞdqðpÞ ¼ 1.

These assumptions mean that the collision mechanism in the quantum region drive the distribution func-

tion g towards an equilibrium distribution function. The latter is defined as the Boltzmann distribution

function in energy (2.21). We suppose that the quantum region lies in the undoped region of the device

where the electrons are dilute enough. In this case, the electron gas degeneracy can be ignored and the

Boltzmann distribution is a good approximation of the true equilibrium distribution. If the density were
higher, the operator P should have the general form (2.26) to account for the electron gas degeneracy

and for the fact that the equilibrium distribution function should be a Fermi–Dirac one, but we shall dis-

miss these phenomena in the present discussion.

Moreover, we make a relaxation time approximation, i.e. we assume that Upp 0 is independent of p and p 0

and given by Upp 0 = 1/sQ, where sQ is the relaxation time. Therefore, the Pauli operator is the linear oper-

ator given by
ðPgÞðpÞ ¼ 1

sQ
f0ðpÞ

Z
R

gðp0Þdqðp0Þ � gðpÞ
Z
R

f0ðpÞdqðpÞ
� �

: ð2:30Þ
The probability that a carrier in any state p will be scattered into the momentum volume dp 0 is given by

Wp! p 0 dq(p 0), which is by our assumption equal to
f ðEp0 Þ
sQNeq

Z x2

x1

jwp0 ðxÞj
2
dx

� �
dp0: ð2:31Þ
Since the term
R x2
x1
jwp0ðxÞj

2
dx will be very large for p 0 corresponding to resonant energies, the probability

(2.31) will be very large for p 0 corresponding to energies equal to a resonant energy, which shows that

the resonant states are fed by the collision mechanism.

The stationary Pauli master equation, i.e. otg = 0 in (2.29), can be written as
mpgðpÞ � ðPgÞðpÞ ¼ mpfclaðpÞ:
Inserting the expression (2.30) in the above equation we obtain
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mp þ
1

sQ

� �
gðpÞ � 1

sQ
f0ðpÞ

Z
R

gðp0Þdqðp0Þ ¼ mpfclaðpÞ: ð2:32Þ
After some computation we find
gðpÞ ¼ jpAf ðEpÞ þ ð1� jpÞfclaðpÞ; ð2:33Þ

with
jp :¼
1

1þ sQmp
and A :¼

R
R
ð1� jp0 Þfclaðp0Þdqðp0ÞR

R
ð1� jp0 Þf ðEp0 Þdqðp0Þ

: ð2:34Þ
We remark that 0 < jp < 1, for all p 2 R. Furthermore, the total number of particle in the quantum re-

gion N is given by
N ¼
Z
R

gðpÞdqðpÞ ¼ ANeq:
Therefore, A can be written as
A ¼ N

Neq

; ð2:35Þ
i.e. A is the ratio of the total number of particles N and the number of particles with respect to the equi-

librium distribution Neq.
If the relaxation time sQ tends to infinity (zero), we get that jp tends to zero (one). Thus we get from the

expression (2.33)
lim
sQ !1

gðpÞ ¼ fclaðpÞ ð2:36Þ
and
lim
sQ ! 0

gðpÞ ¼ A1f ðEpÞ; where A1 ¼ lim
sQ ! 0

A ¼
R
R
mpfclaðpÞdqðpÞR

R
mpf ðEpÞdqðpÞ

: ð2:37Þ
Since fcla is equal to the distribution function in the ballistically case, see Section 2.3.1, Eq. (2.20), we get
that for an infinite relaxation time the collisional hybrid model is equal to the ballistically hybrid model of

Section 2.3.1. Furthermore, for sQ ! 0 we obtain – as aspected – g(p) = A1f(Ep), i.e. we end up in an equi-

librium situation.

To simplify our considerations in the following, we will assume that f is given by the Boltzmann distri-

bution function (2.21). A straightforward computation gives
A :¼ r expð�uðx1Þ=U thÞ þ ð1� rÞ expð�uðx2Þ=U thÞ;

with
r :¼
R1
0
ð1� jpÞf ðEpÞdqðpÞR

R
ð1� jpÞf ðEpÞdqðpÞ

:

Inserting the expression (2.33) in Eq. (2.6) we get
jQ ¼ hðuðx1ÞÞ � hðuðx2ÞÞ; ð2:38Þ
with
hðnÞ ¼ H�1 expð�n=U thÞ; ð2:39Þ

where
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H�1 ¼ n0

Z 1

0

vpT ðpÞ expð�Ep=ðkBT ÞÞ 1� ð1� rÞjp � rj�pþ

� �
dp: ð2:40Þ
Note that in equilibrium, i.e. u1 = u2 = /, we have g(p) = f(Ep + e/). Hence there are no collision events in

equilibrium. Furthermore, the current vanishes in equilibrium.

We use the function h defined in (2.39) in the boundary conditions of the drift-diffusion equation (2.7)

and therefore guarantee the continuity of the current, if the distribution function g is a solution of the

Pauli master equation (2.32). The positivity of H follows immediately from the fact that 0 < jp < 1 for

all p 2 R.

Thus we look for a solution of the following mapping: Assume that W is given. Calculating the trans-

mission coefficient T(p), we obtain the constant H by (2.40). Solving the drift-diffusion equations (2.7) we
obtain the classical density nC, solve the Pauli master equation to obtain the distribution function g, see

(2.33), and obtain the quantum density nQ. Solving Poisson�s equation with n given by (2.18) we get a

new potential Wnew.

Since jp ! 0 if sQ ! 1, we get by (2.24) and (2.40) that Hcol ! Hbal if sQ ! 1, where Hbal is given by

(2.24) and Hcol by (2.40). Thus if the relaxation time sQ tends to infinity, we obtain – as aspected – the bal-

listic hybrid model of Section 2.3.1.

The assumption that the collision cross section Upp 0 = 1/sQ, i.e. is constant leads to a explicit expression

of the distribution function g, see (2.33) and thus to an expression for the constant H in Eq. (2.40). Non-
constant functions Upp 0, which are necessary to describe more realistic elastic and phonon collisions [8,9],

can be included in the present model. The numerical computation will require a matrix inversion for the

computation of g in terms of fcla, which can be done easily.
3. Three test devices

In this section, we apply the coupling methods presented in the previous section to three resonant tun-
neling diodes dealt with in the literature. To be comparable with the simulations obtained by the hybrid

model of [6] we consider the RTD of Mounaix et al. [15] and of Kluksdahl et al. [14]. Moreover, we simulate

the device of [8] in order to have a comparison with a collisional simulation. These simulations are mainly

done for validations purpose. We refer to the corresponding articles for a discussion on the device geometry

of each individual device.

We use the Boltzmann statistics in the classical and quantum zone, i.e. F is given by (2.8) and f by (2.21).

As boundary conditions for the drift-diffusion equation we assume
nCð0Þ ¼ ND; nCðLÞ ¼ ND;
where ND = nD(0) = nD(L) (nD denotes the doping profile). The Poisson equation is treated with the bound-

ary conditions given in (2.19a). Furthermore, the band-edge offset DE is equal to zero in the classical zone.

Therefore, W(x) = V(x) for all x 2 X. The mobility is given by l = sCe/m, where sC is the mean collision

time in the classical zone. The density in the classical zone is then given by
nCðxÞ ¼
ND exp W ðxÞ=U thð Þ � j=ðU thlÞ

R x
0
exp ðW ðxÞ � W ðtÞÞ=U thð Þdt; x 2 ð0; x1Þ;

ND exp ðW ðxÞ � W LÞ=U thð Þ þ j=ðU thlÞ
R L
x exp ðW ðxÞ � W ðtÞÞ=U thð Þdt; x 2 ðx2; LÞ;

(

where
j ¼ 1� expð�W L=U thÞ½ �ðND=N 0Þ
Hþ 1=ðU thlN 0Þ

R
X expð�W ðtÞ=U thÞdt

:
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The constant H depends on the quantum zone and is given by (2.24), if the quantum zone is treated ball-

istically, and by (2.40), if collisions are included in the quantum zone. To distinguish between the two dif-

ferent H�s we will write Hbal for (2.24) and Hcol for (2.40). Schrödinger�s equation is discretized as described

in [6] and Poisson�s equation in solved by the Gummel method, see e.g. [19].

3.1. The RTD of Mounaix et al. [15]

The first device we consider is the resonant tunneling diode investigated by Mounaix et al. [15].

The geometry of the device is depicted in Fig. 1. It consists of 5 nm tunnel barriers of Al0.3Ga0.7As sep-

arated by a 5 nm GaAs undoped well. The double-barrier heterostructure is placed between two undoped

2.5 nm claddings and two 50 nm GaAS spacer layer with a doping density of 2 · 1016 cm�3. These spacer

are enclosed by two 2 · 1018 cm�3 GaAs doped cap layer of 500 nm width. This leads to a total device

length of L = 1120 nm.
The double barrier height H is of 0.23 eV and the relative permittivity � is constant over the whole device

with � = 12.4�0. The effective mass is m1 = 0.067m0 in the GaAs regions and m2 = 0.092m0 in the barriers.

The temperature is fixed at room temperature T = 300 K. The physical values are summarized in Table 1.

The current–voltage characteristics obtain in the ballistic and collision case is displayed in Fig. 4. The

quantum zone was places at the N+–N and N–N+ junctions, i.e. x1 = 500 nm and x2 = 620 nm. sC is chosen

to be 3.24 · 10�13 s and in the collision case we set sQ equal to sC, i.e. sC = sQ = s.
Our results differ in several ways with those of [15]. First in [15] two current peaks are observed, a flat

one around 0.26 V and a sharp one at 0.32 V. We find only one current peak at 0.25 V. Furthermore, our
values of the peak current density are a factor two below that of [15]. This is probably due to the collision-

less treatment of the device in [15].

A comparison with the method used in [6] and the ballistic coupling introduced in Section 2.3.1, shows

that the current–voltage characteristic obtained by our model coincides with that obtained in [6] by the

Marshak approximation of the coupling constant H. This is not surprising, since the coupling constant de-

fined by (2.24) is the dominant factor in the Marshak coupling constant used in [6].
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Fig. 1. The double barrier resonant tunneling structure of [15].

Table 1

Physical parameters for the device of [15], where the index 1 refers to the GaAs regions and 2 to the barrier region

m1 m2 � T [K] H [eV]

0.067m0 0.092m0 12.4�0 300 0.23
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Looking at the ballistic and the collision current–voltage characteristics plotted in Fig. 4 we see that the

collisionless current is larger than the collision current for an applied voltage up to 0.25 V. The potential

profiles for a series of applied biases are shown in Fig. 5. We observe that the potential bump on the left

hand side of the double barrier only changes significantly in the ballistic case, if the applied bias passes the

current peak bias. In the collisional case this potential bump is monotonically lowered with increasing bias.
This is explained by the probability (2.31): We see from Eq. (2.31) that particles entering the quantum zone

at x1 with momentum p > 0 have very high probability to be scattered to states with energy Ep 0 � �eV2, i.e.

to change there momentum to p 0 < 0. Hence particles are transported from the left side to the right side of

the double barrier due to the collision mechanism. Furthermore, this effect is reflected in Figs. 5 and 6 by
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Fig. 5. Potential profiles in the ballistically and collisional case for the device of Mounaix et al. [15] where the interface is fixed at

x1 = 500 nm and x2 = 620 nm and sC = sQ = 3.24 · 10�13 s.
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noting that the ‘‘collisional potential/density’’ is smaller than the ‘‘ballistically potential/density’’ on the left

hand side of the double barrier, whereas the opposite holds on the right hand side of the double barrier. The

transmission coefficients corresponding to the current peak voltage are plotted in Fig. 7. The first transmis-

sion resonance appears at �bal = 0.088 eV in the ballistic case and �col = 0.055 eV in the collision case. The

distribution function in the ballistic and the collisional cases are shown in Fig. 8. First we observe that
gcol(p) 6 gbal(p) for p > 0 and gcol(p) P gbal(p) for p < 0, which also reflects the transport of particles from

the left side to the right side of the barrier due to collisions. In the collisional case we observe that g(p) is

almost zero for p corresponding to the resonance energies. This can be seen from the formula (2.33): As
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Fig. 7. Transmission coefficient and potential profile for the current peak bias 0.25 V. �bal, �col denote the resonance energy in the

ballistically and collisional case, respectively.
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already mentioned in Section 2.3.2 mp � 0 for momenta p corresponding to energies equal to the resonant

energies. Since by (2.34) jp � 1, we have g(p) � Af(Ep). The constant A behaves like exp(�dV/Uth), i.e. de-

creases exponentially with increasing applied bias. This can be seen by the expression (2.35) for A: The total

number of particles N will stay constant with increasing bias, whereas the value of Neq behaves like

exp(dV/Uth). Therefore we get for momenta p with energies close to a resonant energy g(p) � const exp-
(�dV)f(Ep) and thus g(p) � 0 for large applied biases.

The shape of the I–V characteristic shown in Fig. 4 is then explained as follows: For an applied bias

smaller than the peak bias of 0.25 V only carriers with energy larger than �emaxV(x), i.e. above the poten-

tial bump, and those with energies close to the resonant energy contribute to the current. In the collisional

case the distribution function does not weight the states close to the resonant energies as strong as the bal-

listic distribution function. Therefore the collisional current is smaller than the ballistical current for small

biases. For applied biases larger than 0.25 V only the states with energies above the potential bump con-

tribute to the current. Since – as explained above – the potential bump is lowered by the collisions there
are more particles that contribute to the current than in the ballistic case. Thus the collisional current is

larger than the ballistically current for large applied biases. This nonphysical blow up of the current density

in the collisional case is due to non local effects (in energy) induced by the relaxation time approximation in

the Pauli operator P: the relaxation time approximation in the operator P allows states to make an energy

jump of order edV. This energy jump is nonphysical for large applied biases, i.e. large dV, since in an elec-

tron phonon collision event there is only an energy jump of order �hx0, i.e. of the phonon energy. Mathe-

matically this is expressed by choosing the transition ratesWp! p 0 of the form w(p,p 0)d(Ep � Ep 0 ± �hx0). The

d-term assures a localization in energy which is missing in the relaxation time approach used here.
Now, we investigate the influence of s in the collision case. The interface is again fixed at the N+–N and

N–N+ junctions and the value of s = sC = sQ is changed between 10�14 and 10�12 s. The resulting I–V curve

are gathered in Fig. 9. We observe that the I–V characteristic is very sensitive with respect to s. The current
peak obtained is larger for larger values of s. This is due to the decrease of collision events and thus an

increase of transfer of particles from the left to the right side of the double barrier. Furthermore, we see

that for s equal to 10�12 and 3 · 10�13 s the current peaks are located at a bias of 0.25 V, whereas for s
larger than 3 · 10�13 s the current peak bias is situated at 0.28 V. For s = 10�13 s two current peaks are

obtained, a flat one at 0.25 V and a peaked one at 0.28 V.
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The influence of the interface position was also investigated. The current–voltage characteristics for the

ballistic case, if the left interface boundary x1 is moved, are shown in Fig. 10. The right interface boundary

x2 was fixed at 620 nm and sC = 3.24 · 10�13 s. We see that the left interface boundary cannot be taken to

close to the double barrier, since otherwise the quantum resonances are not adequately taken into account.

The influence of the right boundary x2 is less strong than that of x1. The I–V curves if the x2 position is
changed, are plotted in Fig. 11 where x1 is fixed at 500 nm and sC = 3.24 · 10�13 s. We see that x2 can

be chosen relatively close to the double barrier, since the high energetic particles in the drain are equally

well described by drift-diffusion and quantum models.

The influence of the interface in the collision case is much stronger. The current–voltage characteristics if

the position of x1 is changed is plotted in Fig. 12. We observe that the current peak is moved to the left, if

the x1 position is moved to the right. Also the value of the current peak depends on the position of the x1
interface boundary. The closer x1 is to the double-barrier, the lower the current peak value. The current
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Fig. 10. I–V curve in the ballistic case if the interface boundary x1 is moved and x2 is fixed at 620 nm.
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voltage characteristic, if the x2 position is change is shown in Fig. 13. The current peak value is not influ-

enced by the position of x2, but the location of the current peak.

3.2. The RTD of Kluksdahl et al. [14]

In this subsection, we consider the resonant tunneling device geometry of [14]. The schematic geometry

of this device is shown in Fig. 2 and the physical parameters are summarized in Table 2, where s = sC = sQ
and H is the hight of the double barrier.
Table 2

Physical parameters for the device of [14], where the index 1 refers to the GaAs regions and 2 to the barrier region

m �1 �2 s [s] T [K] H [eV]

0.069m0 13.1�0 12.3�0 1.17 · 10�13 300 0.3
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Fig. 13. I–V curve in the collisional case if the interface boundary x2 is moved. x1 is fixed at 500 nm and s = sC = sQ = 3.24 · 10�13 s.
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The calculated I–V curve is plotted in Fig. 14 for the ballistic and collision case, where the interface

boundaries are fixed at x1 = 490 nm and x2 = 530 nm. As for the previous device, we observe that the cur-

rent peak of the current–voltage characteristics is lower for the collision current. The current peak is located

for both cases at an applied bias of 0.26 V. The blow up of the collision current for high applied biases is

again due to the non local effects of the relaxation time approximation in the collision operator of the Pauli
master equation. The potential profiles for the current peak bias is shown in Fig. 15. The results obtained

here in the ballistic case compare well with those of [6] and those of [14], where a Wigner formulation was

used for the calculations.

The density profile for the current peak bias is shown in Fig. 16. Note the large discontinuity of the den-

sity in the collision case. The quantum density calculated at the interface boundary x1 is lower compared to
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Fig. 14. I–V curve of the device [14] where x1 = 490 nm and x2 = 530 nm.
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the classical density at x1. The contrary is true at the x2 boundary, i.e. the quantum density is larger than

the classical density at x2. This reflects the transport of particles from the left to the ride side of the double

barrier due to collisions.

The influence of the interface position has also been investigated. The current–voltage characteristics, if

the x1 position is moved, is shown in Fig. 17 in the ballistic and in Fig. 18 in collision case. As in [6] we see
that for x1 = 470 nm the ballistic I–V characteristic has a monotone behavior. In [6] it was presumed that

this was due to the neglection of collisions in the quantum zone, because a neglection of collisions in large

regions is known to lead to non physical current–voltage characteristics. In fact Fig. 18, where collisions in

the quantum region are included, shows that for x1 = 470 nm the I–V characteristic is in fact non monotone

as it should be. As in the previous device the high current for large applied biases is again due to the non

local effects in energy space described before.
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Fig. 16. Density profile for the current peak bias 0.26 V for the device of [14].
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Fig. 17. I–V characteristic when the interface x1 is moved in the ballistically case.
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Fig. 18. I–V characteristic when the interface x1 is moved in the collisional case.
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3.3. The RTD of Fischetti [8]

The last device we consider in this paper is that of Fischetti [8]. Compared to the previous devices the size

of this resonant tunneling diode is much smaller (316.1 nm). The geometry of the device is shown in Fig. 3

and the physical parameters used for the calculation are gathered in Table 3. For the collisional calculations

we se sQ = sC = s. The calculated I–V curve for the interface position x1 = 147 nm and x2 = 171.1 nm are

plotted in Fig. 19 for the ballistically and collisional simulations. The current peak in the ballistically case is
Table 3

Physical parameters for the device of [8], where the index 1 refers to the GaAs regions and 2 to the barrier region

m1 m2 �1 �2 s [s] T [K] H [eV]

0.067m0 0.149m0 12.09�0 10.92�0 3.24 · 10�13 300 0.23
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Fig. 19. I–V curve of the device [8] where x1 = 147 nm and x2 = 171.1 nm.
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observed at an applied bias of 0.37 V and the peak value is 92 · 107 A m�2. In [8] the current peak is ob-

tained at an applied bias of 0.4 V with a value of 130 · 107 A m�2. The model used in [8] for the ballistic

simulations is completely ballistic whereas our model is only ballistic in the quantum region. This explains

the fact that our obtained current peak value is larger than that obtained by Fischetti. In the collisional case

we observe one current peak at an applied bias of 0.35 V with a value of 62 · 107 A m�2, see Fig. 19. The I–
V curve of Fischetti two current peaks are observed. A flat one at an applied bias of 0.2 V with 70 · 107

A m�2 and a peaked one at 0.43 V with a current density of 220 · 107 A m�2. The different shape of the

I–V curves observed here is explained by the different Pauli operator used in [8]: In [8] a more complex Pauli

operator P is used which takes into account nonpolar scattering with acoustic phonons, polar and nonpolar

scattering with optical phonons. Here, we used a relaxation time approximation for the operator P in the

master equation. Furthermore, we note that in [8] convergence problems appeared in the self-consistent
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Fig. 20. Potential profiles for applied biases of 0.2, 0.3 and 0.4 V of the device [8]. The quantum interface is chosen at x1 = 147 nm and

x2 = 171.1 nm.
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Fig. 21. Density profile for an applied bias of 0.36 V of the device [8].
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computation of the electrostatic potential in the collisional case around the current peaks. In our simula-

tions we did not observe any convergence problems. For large applied biases we do not observe a blow up

of the current density in the collisional simulations which appeared in the I–V characteristics of the devices

discussed before. This is due to the small size of the quantum zone such that the non-local effects leading to

the blow up is not as strong as for the other devices. This is also reflected in the potential profile plotted in
Fig. 20 and the density profile shown in Fig. 21. The resulting I–V curves if the left interface boundary is

moved (x2 is fixed at 172.1 nm) are shown in Figs. 22 and 23 for the ballistically and collisional case, respec-

tively. We observe – as in the device of Kluksdahl et al. [14] – that the best results are obtained if the left

interface is chosen close to the double barrier.
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Fig. 22. I–V characteristic for the device of [8] when the interface x1 is moved in the ballistically case. The position of x2 is fixed at

171.1 nm.
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Fig. 23. I–V characteristic for the device of [8] when the interface x1 is moved in the collisional case. The position of x2 is fixed at 171.1

nm.
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4. Summary and conclusion

We presented a method to couple drift-diffusion and quantum models in a one dimensional stationary

framework. Collisions in the quantum region have been introduced by a Pauli master equation, which con-

sists of a collision operator P (Pauli operator) and an operator C which takes into account the interaction
with the classical regions. A relaxation time approximation was used for the operator P which allows an

explicit expressions of the distribution function g, see (2.33). The two models are coupled such that a con-

tinuity of the current density is guaranteed. This was achieved by introducing the coupling constant H. The

coupling strategy presented in this paper was compared to that used in [6] in the ballistically case. In con-

trast to [6] we found an analytic expression for the coupling constant H, see (2.24), and guarantee a con-

tinuity of the current density over the whole device domain. The model has been numerically implemented

and validated against three resonant tunneling diode test cases. If the quantum zone is chosen properly,

good numerical results are obtained in the ballistically case. The relaxation time approach gives good re-
sults for small applied biases, but a non physical blow up of the current was observed for large applied

biases. This effect is due to a non local effect in energy space due to the relaxation time approximation. This

should be cured by using a more realistic electron phonon collision operator P as considered e.g. in [8,9].

Especially the d-terms should prevent this non local effects. The extension of the present model to this type

of Pauli operator P can be done. However, the explicit expression for the coupling of the drift-diffusion and

Schrödinger model, i.e. the constant H, will be lost. The influence of the position of the quantum region has

been investigated. Furthermore we showed that the results are very sensitive with respect to the relaxation

time s.
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